Parallel Non Negative Matrix Factorization for Document Clustering

نویسنده

  • Khushboo Kanjani
چکیده

Non-negative matrix factorization has been used as an effective approach for document clustering lately. One advantage of this method is that clustering results can be directly concluded from the factor matrices. This project gives parallel implementation of three algorithms for Non-negative matrix factorization. Experiments of these parallel algorithms for large datasets shows good speedup for each of these methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Clustering Through Non-Negative Matrix Factorization: A Case Study of Hadoop for Computational Time Reduction of Large Scale Documents

In this paper we discuss a new model for document clustering which has been adapted using non-negative matrix factorization method. The key idea is to cluster the documents after measuring the proximity of the documents with the extracted features. The extracted features are considered as the final cluster labels and clustering is done using cosine similarity which is equivalent to k-means with...

متن کامل

Big Text Data Clustering using Class Labels and Semantic Feature Based on Hadoop of Cloud Computing

Clustering of class labels can be generated automatically, which is much lower quality than labels specified by human. If the class labels for clustering are provided, the clustering is more effective. In classic document clustering based on vector model, documents appear terms frequency without considering the semantic information of each document. The property of vector model may be incorrect...

متن کامل

An improved non-negative matrix factorization algorithm based on genetic algorithm

The non-negative matrix factorization (NMF) algorithm is a classical matrix factorization and dimension reduction method in machine learning and data mining. However, in real problems, we always have to run the algorithm for several times and use the best matrix factorization result as the final output because of the random initialization of the matrix factorization. In this paper, we proposed ...

متن کامل

Clinical Document Clustering using Multi-view Non-Negative Matrix Factorization

Clinical document contains vital information like symptom names, medication names, age, gender and some demographical information. These information can be used for giving quick relief from a disease. In existing system, they had built a system for clustering symptom names and medication names using Multi-View Non-Negative Matrix Factorization. While considering the clinical documents the facto...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007